Термин data-driven появился на стыке девяностых и двухтысячных. Именно тогда бизнес-среда стала говорить о новом подходе в маркетинге, который позволял принимать решения на основе собранных данных.
Елена Герасимова, руководитель направления Data Science и эксперт курса «Аналитика для руководителей» в «Нетологии», рассказала, на чем основывается подход data-driven, как он используется в современных компаниях и что нужно делать руководителю, чтобы успешно внедрить культуру принятия решений на основе данных.
Сегодня в дефиците не только технические специалисты, способные организовать работу с данными и устройствами, но и менеджеры, понимающие, как интегрировать Data Science и новейшие технологии в бизнес-процессы, правильно нанимать специалистов, ставить им задачи и организовывать их работу.
Менеджмент data-driven — это культура принятия стратегических решений на основе данных с интеграцией аналитических отчетов в ключевые бизнес-процессы компании.
Учитывая растущее количество кросс-компетентных ролей в компаниях, появляется все больше принципиально новых позиций, которые занимаются работой с аналитикой в разном виде:
CDO (Chief Data Officer),
CAO (Chief Analytics Officer),
CPO (Chief Privacy Officer),
CAIO (Chief Artificial Intelligence Officer),
CGO (Chief Growth Officer).
Каждая из этих позиций предполагает выступление ролевой моделью инфраструктурных изменений и трансформацию существующей в компании культуры, стратегии, видения и методики принятия решений.
При этом нередко переход к data-driven подразумевает не столько технологическую трансформацию, сколько изменение бизнес-модели компании. При таком подходе вы отбрасываете все, кроме численных данных, в целостности и актуальности которых уверены.
В каждой из новых перечисленных ролей на первый план выходят:
понимание множества окружающих функций и процессов,
«насмотренность», опыт и компетенции в каждой из затронутых в трансформации областей,
способность связать воедино собственный опыт и видение остальных участников С-уровня,
желание преодолевать сопротивление «делать, как всегда делали», исследовать и быть готовым принять культуру работы с данными.
Роль данных в принятии решений
С руководителями мы разобрались – от данных им никуда не деться. Какую же роль играет аналитика для принятия решений?
Подход data-driven демонстрирует видение того, как компания, использующая данные для принятия решений, выглядит в реальности (совершенно необязательно иметь для этого цифровой продукт).
Помимо этого, он помогает уточнить формулировку миссии бизнеса и получить выводы, которые делают аналитику и данные ощутимыми (реальными) для людей без опыта анализа. Передовые технологии обработки данных через ИИ и машинное обучение становятся понятными более широкому кругу, когда используются для предиктивного анализа продаж, износа оборудования и риска вложений в активы.
Таким образом культура работы с данными помогает сделать очевидными практические бизнес-результаты от анализа данных и понимание текущего состояния, фокуса и намерений бизнеса.
Как стать data-driven?
Сама культура принятия решений, основанная исключительно на данных, может выглядеть простой с точки зрения внедрения, но руководителю и всей команде необходимо пройти определенные шаги и разобрать важные вопросы.
Четко опишите свои бизнес-данные и аналитическую стратегию.
Что собираем? Где храним? Сколько храним? Сколько это стоит? Какой результат нам даст?
Не страшно, если компания решит начать с небольшого проекта. Только такие гиганты, как Facebook или Amazon, могут себе позволить хранить все подряд постоянно и без потерь.
Оцените стоимость информационно-технической экосистемы, позволяющей получать доступ к данным, и количество ее пользователей.
Сейчас всю обработку данных можно доверить облакам, так вам не нужно будет капитально вкладываться в оборудование, которое может устареть быстрее, чем трансформируется культура компании.
Распишите план действий по переходу от бизнес-отчетности к глобальной аналитике: отчетность – результат, аналитика – процесс, хотя и там, и там заказчик – бизнес.
Актуализируйте курс и скорость трансформации раз в квартал: нужно, чтобы все сотрудники компании жили ею, а не просто смотрели на цифры в формальных документах.
CDO берет на себя роль центра всей «аналитики»: создает для каждого из потребителей данных в компании инфраструктуру самостоятельного доступа.
Объедините всех единой целью изменения культуры работы с данными: необходимо тесно взаимодействовать с ИТ-специалистами и другими участниками С-круга вашей компании.
Учитывая все вышесказанное, можно сделать вывод, что переход к культуре data-driven необходим не всем.
Например, компании, основанные на сильном брендинге в качестве источника основного дохода, могут не видеть особой ценности в том, чтобы стать data-driven, поскольку решения по брендингу не требуют большого количества данных.
Отличным примером применения трансформации data-driven на уровне всей компании является Uber: обширно используются данные, которые компания получает от пассажиров и водителей.
Алгоритмы Uber рассчитывают стоимость поездки, оценивают потоки людей, меняют цены, дают рекомендации водителям, как больше заработать, основываясь на собранных данных.
В компании такого уровня вся работа с данными требовала бы найма огромного штата дата-сайентистов и их погружения в бизнес-контекст. Вместо этого компания пошла по пути построения платформы управления данными, которая позволила использовать продвинутые аналитические инструменты широкому кругу пользователей.
Но стоить помнить, что и к сотрудникам, даже высокоуровневым, в таких условиях предъявляются высокие требования. Как минимум ожидается владение базовым инструментарием аналитика:
SQL,
основы Python,
BI-инструментов.
Подводя итог, можно сказать, что руководителям, «пощупавшим» данные, гораздо проще находить со своими аналитиками общий язык в дальнейшем.
Аналитик данных – это одна из важнейших ролей в компании. Глаза, ум и здравый смысл бизнеса.
Аналитик обязан «видеть цифру за каждым человеком, и человека за каждой цифрой», а также уметь продать свое видение коллегам, которые могут иметь очень разный опыт и отношение к аналитике в целом. Эта роль даже в продуктовой компании предполагает максимальное количество общения с неаналитиками.
Именно культура работы с данными помогает договориться о правилах игры, терминах, визуализации метрик, выводах и дальнейших рекомендациях. Но руководителю нужно учиться пониманию роли аналитики и ее результатов в бизнес-процессах компании.
Это будет происходить небыстро, даже если, на первый взгляд, культура data-driven близка компании. Менеджерам необходимо понимать, как интерпретировать данные в стратегии, строить работающие гипотезы на их основе и при этом контролировать работу специалистов по аналитике. С 27 мая в «Нетологии» стартует курс «Аналитика для руководителей», на котором будут разбираться все эти вопросы и подход data-driven в целом.