Самые горячие инструменты торговли в XXI веке

Сергей Галеев
Сергей Галеев

Cооснователь и генеральный директор компании AddReality

Расскажите друзьям
Виктория Кравченко

Один из крупнейших ритейлеров США на протяжении многих лет охватывал всю территорию страны и выпускал 800-страничные каталоги, а люди ждали их с нетерпением, чтобы заказать товары с доставкой на дом.

Сеть магазинов Sears считается одним из прародителей e-commerce, ей больше 100 лет, она пережила две войны и была новатором для своего времени, но сегодня доживает свой век. Почему?

В какой-то момент ритейлер потерял общий язык с современными клиентами, перестал меняться и не нашел себя в новом мире высокотехнологичного ритейла. Что нужно знать современному магазину, чтобы не повторить путь Sears?

О самых горячих инструментах торговли в XXI веке рассказывает Сергей Галеев, генеральный директор AddReality.

AI-ритейл  – это как?

Ритейл — одна из первых отраслей, которые активно начали экспериментировать с самообучающимися алгоритмами. Именно в ритейле эффект ИИ заметен наиболее ярко, а технология может быть применена в самых разных областях.

ИИ помогает управлять товарными запасами. Например, оптимизировать хранение скоропортящихся товаров на складе или точно спрогнозировать количество требуемых товаров в зависимости от географии или сезона. 

Системы ИИ также анализируют поведение потребителя в магазинах бренда и в онлайне, где человек совершает покупку: когда он это делает, сколько денег он тратит, что он покупает и вместе с чем. В дальнейшем это поможет сделать потребителю наиболее интересные и индивидуальные предложения и построить омниканальный маркетинг.

Machine learning, в сочетании с другими новыми технологиями (например, Digital Signage), умеет интерактивно общаться с покупателями. Например, магазин может «узнать» вошедшего покупателя (применив технологию Face Recognition), таргетировать именно на него рекламные сообщения и захватить внимание.

Система Lift&Learn, которая работает по принципу «возьми и узнай», сразу покажет потребителю digital-ролик с подробной информацией о товаре, взятом с витрины – и все это без участия продавца. 

AI может даже предупреждать мошеннические схемы и инциденты – кражи, взломы. Например, с помощью технологии распознавания лиц, система анализирует базы силовых ведомств и идентифицирует потенциального преступника за доли секунды.

Как вернуть онлайн-покупателей в магазины

В онлайн-рекламе большие данные уже давно и успешно используются — в основном для таргетинга. Когда вы листаете ленту в Facebook, около 10 тысяч параметров влияют на то, что вы увидите дальше.

Показ рекламы тоже не происходит стихийно. В момент загрузки web-страницы ресурс отправляет ваши cookies на RTB (Real Time Bidding – площадку для закупки рекламы в реальном времени на основе аукциона), где за доли секунды система, на основе проанализированных данных, выбирает рекламу, которую вам сейчас покажут.

Данные о результатах показа рекламы моментально отправляются обратно в систему статистики RTB и анализируются рекламодателями. Чем больше данных об аудитории, тем больше возможностей персонализировать рекламные сообщения, повышать их эффективность и снижать «рекламный шум».  

Офлайн-ритейл начинает активно использовать инструменты онлайн-торговли

Например, привязка к показам онлайн-рекламы геотаргетинга Google увеличивает вероятность покупки в офлайне в 5 раз. 26% показов рекламы в Facebook приводит к реальной покупке, и это весьма неплохие показатели. 

Помимо повышения продаж, ритейлеров привлекает в цифровых инструментах возможность сделать затраты на маркетинг более прозрачными, получать четкую оценку эффективности и легко оптимизировать или перенастраивать рекламные кампании. Время дорогих рекламных щитов на улицах постепенно уходит в прошлое: бренды идут туда, где ИТ-инструменты помогают «оцифровать» все процессы и результаты.

Что за ИТ-инструменты?

В ритейле применяются три основных алгоритма машинного обучения: 

  • кластеризация, или clustering; 
  • коллаборативная, или совместная фильтрация (collaborative filtering);
  • market basket analysis – анализ чеков.

1. Кластеризация 

Упрощенно говоря, это сбор и статистическая обработка данных, которые потом упорядочиваются в однородные группы по тому или иному признаку.

Например, представьте, что вы бросаете конфеты на стол. Они падают и располагаются на столе хаотично, случайным образом формируя группы. Ваш следующий шаг – взять отдельные конфеты и распределить их по определенным признакам по устойчивым группам (например, круглые конфеты в красной обертке).

Молодые женщины до 25 лет без детей, интересующиеся спортом – пример такого отдельного покупательского кластера. Принцип кластеризации – данные должны быть сравнимы между собой.

2. Коллаборативная фильтрация

Это метод построения рекомендаций на основе уже известных вам предпочтений групп пользователей. Человек совершает одно действие, потом второе, третье – и система уже может предугадать его четвертый шаг, потому что первые три повторяют шаги других пользователей из определенной группы.

Например, работает Apple Music и подобные ему сервисы, определяя ваши музыкальные предпочтения. При этом существует подход, когда мы идем не от покупательского поведения, а от самого товара – такую модель придумал Amazon: товар не понравился другим пользователям из вашей группы, значит, скорее всего, он не понравится и вам.

3. Анализ данных потребительской корзины 

Для предсказания следующей покупки система анализирует данные потребительской корзины: список приобретенных товаров, перечень и характеристики транзакций, паттерны покупательского поведения – например, какие товары обычно покупаются в связке, цепочки покупок, сезонные факторы.

Искусственный интеллект категоризирует покупательское поведение и переводит их в инсайты, подсказывая ритейлеру варианты таргетирования рекламы, оптимального расположения товаров, планировки магазина, кросс-продаж.

Не онлайн и не офлайн

По данным IHL Group, розничная торговля продолжает процветать во всем мире: статистически сети открывают больше точек, чем закрывают. Разговоры об упадке офлайн-розницы связаны, как правило, именно с потерей контакта с покупателем – она часто не выдерживает конкуренции с онлайном, и закрываются те магазины, у которых не развивается e-commerce направление и никак не применяются digital-технологии в маркетинге и продажах. 

Онлайн-площадки, которые успешно ведут деятельность в интернете, напротив, часто открывают свои офлайн-точки (как Amazon или AliExpress) – успех современного ритейла зависит от того, насколько тесно взаимодействие бренда с покупателями, насколько хорошо он их знает и может ли трансформировать свой бизнес в соответствии с этими знаниями. А именно в этом онлайн-торговля опережает своих более крупных офлайн-собратьев.

Будущее ритейла зависит не от площадки, а от подхода и используемых инструментов. Если вы переезжаете в другую страну, вы начинаете говорить на языке ее жителей. Так почему же бизнес должен являться исключением из правил?


Материалы по теме:

FashionTech Map: 44 участника рынка

Как предпринимателям сэкономить на внедрении умных касс

Компьютерное зрение для поиска контрафакта в интернете — опыт Brand Monitor

Почему надо инвестировать в развитие персонала, а не в автоматизацию (и не слушать экспертов)

Три технологии, которые нужно использовать в ритейле


Самые актуальные новости - в Telegram-канале Rusbase


Комментарии

  • Александр Колотыгин
    Александр Колотыгин 17:49, 13.11.2017
    0
    Всё понятно, конкуренция требует умения выживать. Этим, как раз, призвана самой Природой заниматься наша интуиция. То, что для ИИ совершенно нерешаемая задача, то для нашей природной интуиции - естественное предназначение наряду с распознаванием образов и пониманием. Сирс может попробовать обратиться к нам и мы поможем этой компании в её выживании в конкурентной борьбе. Донесите наше предложение до сознания тех, от кого зависит принятие решений и мы решим эту задачу, совершенно неподъёмную для ИИ, по определению. https://www.google.com/patents/US20170004401?hl=ru&cl=en Наш патент - это подробное изложение того, как устроена и работает "тёмная сторона" нашего Разума или Подсознание. Там, где работает наша Интуиция и где обрабатывается прим. 95% всей информации. И это есть то самое, что безуспешно пытаются найти сейчас и прежде, МТИ и многие другие. Я здесь не затем, чтобы популяризировать наше изобретение. Я здесь затем, чтобы ответить всего на один вопрос - А какого класса задачи решает наша технология? Мы не рассказываем, мы делаем.
Комментарии могут оставлять только авторизованные пользователи.
Экосистема инноваций
30 ноября 2017
Ещё события


Telegram канал @rusbase