Amazon, который изначально был книжным интернет-магазином, стал ecommerce-гигантом, который также развивает облачные вычисления, цифровой стриминг и искусственный интеллект.
Неудивительно, что Amazon требуется много инженеров машинного обучения. По сути, благодаря им компания может продавать более 12 млн продуктов более чем 100 млн подписчиков Amazon Prime и доставлять их за один-два дня. Разберемся, чем занимается такой специалист в Amazon, какими навыками он должен обладать и чего стоит ждать от собеседования.
Чем занимается инженер машинного обучения в Amazon
Инженер машинного обучения в Amazon обрабатывает большие наборы данных, чтобы создавать модели машинного и глубокого обучения для различных клиентов компании. Этот специалист будет работать с консультантами из подразделения профессиональных услуг Amazon, вести проекты от начала до конца и помогать в применении полученных моделей на практике.
Какие у него должны быть навыки
Основные
- Степень бакалавра в математике, статистике, информатике или другой близкой к ним области
- От пяти лет работы в соответствующей сфере
- Опыт работы с широким спектром моделей прогнозирования и принятия решений, а также с методами интеллектуального анализа данных и инструментами для разработки таких моделей
Желательные
- Опыт создания и эксплуатации высокодоступных распределенных систем извлечения, приема и обработки больших наборов данных
- Опыт использования Linux/UNIX для обработки больших наборов данных
- Опыт работы с такими технологиями AWS, как Redshift, S3, EC2, Data Pipeline и EMR
- Сочетание технических и бизнес-навыков, достаточное для взаимодействия со всеми уровнями и направлениями в компании клиента
На какие должности он может рассчитывать
В Amazon есть несколько должностей для специалистов в области машинного обучения и дата-сайенс. Это дата-сайентисты, инженеры машинного обучения, исследователи фундаментальных и прикладных проблем. Хоть по природе своей они и похожи, но все же обладают существенными различиями.
- Дата-сайентисты уделяют особое внимание анализу данных и являются связующим звеном между бизнесом и технической стороной дела. Они отвечают за анализ больших наборов данных и их моделирование.
- Инженеры машинного обучения — это эксперты в построении моделей машинного и глубокого обучения. Они создают модели не только для Amazon, но и для других крупных компаний. Эти специалисты также несут ответственность за внедрение моделей и их подготовку к работе.
- Исследователи фундаментальных проблем обычно обладают магистерской или докторской степенью. Предполагается, что они должны выходить за рамки возможного. Эти ученые проверяют старые и новые технологии Amazon, чтобы определить, насколько они полезны на практике.
- Исследователи прикладных проблем также обычно обладают ученой степенью. В Amazon их роль чуть значительнее, чем у исследователей фундаментальных проблем. Эти специалисты фокусируются на проектах, которые направлены на повышение качества обслуживания: автоматическое распознавание речи, распознавание естественного языка, обработка аудиосигналов, преобразование текста в речь, управление диалогами и так далее.

Как проходит собеседование
Начальный этап
Первый разговор по телефону проводит рекрутер или менеджер по найму: эта беседа нужна для того, чтобы лучше узнать друг друга. Как правило, интервьюер кратко рассказывает о должности и процессе собеседования, а также задает стандартные вопросы о резюме и опыте работы. Ему нужно убедиться, что соискатель заинтересован сотрудничеством с Amazon и обладает необходимыми навыками.
Технический этап
Обычно его проводит менеджер команды машинного обучения. Сначала он задаст ряд общих вопросов о фундаментальных концепциях машинного обучения, например, попросит объяснить разницу между типами моделей или рассказать о дилемме смещения-дисперсии и переобучении.
Далее понадобится написать код на любом удобном языке программирования. Примеры заданий Amazon и их решения можно посмотреть здесь.
Офисный этап
Он состоит из пяти-шести встреч, на которых кандидату на должность задают вопросы, связанные как с техническим аспектом работы, так и с поведенческим.
- Технические вопросы. Стоит ожидать как минимум двух разговоров, посвященных концепциям машинного обучения и программирования. Известно, что соискателям могут задавать вопросы даже по объектно-ориентированному дизайну.
- Поведенческие вопросы. Они могут прозвучать на всех встречах и будут охватывать такие аспекты, как профессиональный опыт, причина последнего увольнения и отношение к командной работе. Кроме того, претендента на должность почти наверняка спросят о принципах лидерства Amazon. Всего их 14 штук, ознакомиться с ними можно на сайте компании.
Нашли опечатку? Выделите текст и нажмите Ctrl + Enter
Материалы по теме
-
Пройти курс «Старт работы на Wildberries»
- 1 Как мотивировать себя закончить онлайн-курс (и нужно ли это делать)
- 2 Выглядеть по-деловому и ставить цели: какие привычки нужно сохранить на удаленной работе
- 3 5 навыков, которые работодатели будут ценить в посткарантинном будущем
- 4 Как проходит собеседование на должность аналитика данных в Facebook